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Abstract: The prediction of Alzheimer’s disease (AD) progression plays a very important role in the
early intervention of patients and the improvement of life quality. Cognitive scales are commonly
used to assess the patient’s status. However, due to the complicated pathogenesis of AD and the
individual differences in AD, the prediction of AD progression is challenging. This paper proposes a
novel coupling model (P-E model) that takes into account the processes of physiological degradation
and emotional state transition of AD patients. We conduct experiments on synthetic data to validate
the effectiveness of the proposed P-E model. Next, we conduct experiments on 134 subjects with
more than 10 follow-ups from the Alzheimer’s Disease Neuroimaging Initiative. The prediction
performance of the P-E model is significantly better than other state-of-the-art methods, which
achieves the mean squared error of 7.137 ± 0.035. The experimental results show that the P-E model
can well characterize the non-monotonic properties of AD cognitive data and can also have a good
predictive ability for time series data with individual differences.

Keywords: Alzheimer’s disease; prediction method; disease progression model; stochastic process

1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia and a growing health
problem. AD causes the brain to atrophy and brain cells to die, resulting in a continuous
decline in thinking, behavioral, and social skills, which affects a person’s ability to function
independently. Proactive management of AD can improve the quality of life of affected
individuals and their caregivers [1]. Therefore, for effective disease management, it is
crucial to accurately assess and predict AD progression. In recent studies, various clinical
data were used to analyze AD progression, containing imaging [2–4], generic [5,6], clinical,
and cognitive data [7,8]. Due to the complexity of AD pathogenesis, the challenge lies
in delineating the relationships among various types of clinical data. Therefore, more
suitable models are required to characterize AD progression and help researchers further
understand AD pathogenesis.

Generally, the development of Alzheimer’s disease is divided into three stages: (1) cog-
nitive normal (CN), (2) mild cognitive impairment (MCI), and (3) Alzheimer’s disease
(AD). With the development of Alzheimer’s disease, a subject’s physiological indicators
and cognitive scales will change in a certain trend. Therefore, recent models of AD pro-
gression can be divided roughly into two categories: (a) those that directly describe the
stages of Alzheimer’s disease [9] and (b) those that consider the stages of Alzheimer’s
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disease as latent variables and the physiological indicators or cognitive scales as observed
variables [10,11]. These two categories of models usually assume the developmental stages
of AD to be discrete states and use Markov chains to characterize the transition between
different stages. However, there is no uniform setting for the number of states, which is
usually determined by model selection. The resulting problems include greatly increased
computational costs and missing interpretability.

Emotion processing dysfunction is associated with the cognitive decline and physi-
ological deterioration in AD. Johansson et al. [12] used regression analyses to show that
apathy and anxiety are associated with cognitive decline as early clinical manifestations
of AD. Arroyo-Anlló et al. [13] found significantly lower total results for cognitive and
emotional assessments in the AD group than those in the CN group via an investigation
of music processing. Chaudhary et al. [14] reviewed studies related to emotion processing
dysfunction in Alzheimer’s disease. Their review study highlighted the pronounced effect
of positive emotion on enhancing the memory and emotional processing deficits related
to biomarkers of hippocampal circuit dysfunction. In summary, it shows that emotion
processing is affected by AD, and positive emotions can also improve AD symptoms. How-
ever, to the best of our knowledge, there are still no studies that take emotional changes
into account in the models for AD prediction.

In the task of AD prediction, the challenge is to build a model that not only can
achieve high-performance AD prediction, but also can help researchers further under-
stand AD pathogenesis. At present, many studies consider the development of AD to be
irreversible [15–17], but it usually does not show a monotonic decline in cognitive data. Ex-
cluding the test error of the subjects, we believe that emotional fluctuations can cause both
improvement and deterioration in cognitive test results. Moreover, there is a coupling rela-
tionship between the emotional state transition and physiological degradation processes.
Therefore, we propose a novel coupling model of physiological degradation and emotional
state (P-E model) for AD prediction. In the P-E model, cognitive data are observations that
can be obtained directly, while the physiological degradation process and emotional state
transition process are continuous, hidden states. Physiological degradation is characterized
by a monotonic stochastic process, thus exhibiting irreversible properties of development in
AD. The emotional state transition is characterized by a non-monotonic stochastic process.
The observation process is jointly determined by the physiological degradation process
and the emotional state transition process. It can describe the non-monotonic degradation
process and is more suitable for the real observation results.

2. Related Work

Longitudinal data track the same type of information on the same subjects at multiple
points in time, which can provide temporal features to disease progression models (DPMs).
Mofrad et al. [18] utilized mixed-effects models to derive the features of trajectory changes
from longitudinal data containing the Rey Auditory Verbal Learning Test (RAVLT) and
the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog13). The derived
features were fed into classification models to predict the conversions from CN to MCI or
from MCI to AD. Lorenzi et al. [19] proposed a DPM based on Bayesian Gaussian process
regression, which is capable of probabilistic diagnosis and estimation of the biomarker
trajectories with cognitive data and magnetic resonance imaging (MRI) measurements.
Zhang et al. [20] used a three-state Markov model to model the progression of AD. The
model predicted transitions between different clinical diagnosis states with risk factors
such as age, apolipoprotein E4 (APOE4), and brain volumetric MRI features, whereas
Kang et al. [21] developed a Bayesian hidden Markov model, which uses clinical diagnosis
states as unobservable latent variables and functional assessment questionnaire (FAQ)
scores as observable variables. The hidden Markov model identified four states of AD
pathology, which were determined by deviance information criteria (DIC) [22], and ex-
amined the effects of the hippocampus, age, gender, and APOE4 on the degradation of
cognitive function.
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Recently, deep learning is gaining a lot of popularity because it can solve an ex-
tremely wide range of problems in several domains with good accuracy. Without too
much professional knowledge, deep learning can automatically implement the process of
feature extraction from data, rather than engineering features manually. Jung et al. [23]
proposed a deep recurrent network that utilizes cognitive data from the Mini-Mental State
Examination (MMSE), ADAS-cog11, and ADAS-cog13 as the inputs. Along with the MRI
features, the model predicted individuals’ cognitive scores and clinical labels over time.
Mehdipour Ghazi et al. [24] proposed a training algorithm for long short-term memory
(LSTM) networks to improve their robustness against missing data. An LSTM network
trained by the proposed algorithm was utilized to predict AD progression using the lon-
gitudinal measurements of six volumetric MRI biomarkers. Lee et al. [25] used a gated
recurrent unit (GRU) to suggest that the model with longitudinal data may achieve better
classification results than that with baseline data in the prediction of MCI-to-AD conversion.

From the aforementioned works, we can observe that there is a problem of deter-
mining the number of discrete states to describe the state transition of AD. On the other
hand, the development of AD is not a step but a continuous process. Although deep
learning methods can reduce the need for professional knowledge, they also reduce the
interpretability of the model. In order to further understand AD pathogenesis, we need
more physiological meanings for the changes described by the model. In this paper, we
propose the P-E model, using a physiological degradation process and an emotional state
transition process to jointly describe the underlying AD development. Cognitive data are
used as observations to assess and predict the progression of AD. The main contributions of
this paper are as follows: (1) We develop a model based on gamma process to characterize
the monotonic physiological degradation process underlying AD progression. (2) We
establish the relationship between emotional changes and physiological degradation in
AD progression, and we correlate cognitive data with the emotional state transition and
physiological degradation processes. (3) We carry out experiments to demonstrate the
validity of the P-E model and discuss the effect of the parameters on the model. Moreover,
we verify its applicability with a real AD dataset.

3. Methodology

In this paper, two basic hypotheses are proposed: (1) The physiological degradation
process in AD patients is irreversible, and (2) there is a strong coupling relationship be-
tween the patient’s emotional state and the physiological degradation process. As shown in
Figure 1A, the physiological degradation process D(t) is characterized by a monotonically
increasing process, zero means that the physiological degradation does not occur, and the
degradation rate is affected by the emotional state. As shown in Figure 1B, the emotional
state transition process M(t) may increase or decrease, influenced by the physiological
degradation stage and positive or negative emotions. In this way, there is a strong cou-
pling relationship between the physiological degradation process and the emotional state
transition process.

The physiological degradation process is a monotonic stochastic process denoted
by {D(t), t ≥ 0}, where D(t) ≥ 0. D(t) = 0 indicates that physiological degradation
has not occurred, and as the D(t) increases, the physiological degradation becomes more
serious. The emotional state transition process is a non-monotonic stochastic process
{M(t), t ≥ 0}, where M(t) ∈ R. Observation time points are known as t0, t1, . . . , tn. The
physiological degradation stage D(ti) is related to the physiological degradation stage
D(ti−1) and emotional state M(ti−1) of the previous observation time point. The emotional
state M(ti) is related to the emotional state M(ti−1) of the previous observation time
point, the physiological degradation stage D(ti−1), and the emotional impact δ(ti) =
[δ(−)(ti) δ(+)(ti)]

T . In this paper, the emotional impacts are considered to be divided into
negative emotions δ(−)(ti) that help improve symptoms and positive emotions δ(+)(ti)
that accelerate the deterioration of symptoms. The observation process is denoted by
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{Y(t), t ≥ 0} and is related to both the physiological degradation process and the emotional
state transition process. A graphical representation of the whole model is shown in Figure 2.
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Figure 1. The relationship between physiological degradation and emotional state transition. (A) The
physiological degradation process. (B) The emotional state transition process.
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Figure 2. A novel coupling model of physiological degradation and emotional state.

3.1. Emotional State Transition Process

The emotional state transition process is affected by emotional impacts and physio-
logical degradation. In this paper, it is assumed that emotional impacts occur randomly
and are cumulative. The l(−)th negative emotion is denoted by δ

(−)
l(−)

(t), and the counting

process {N(−)(t), t ≥ 0} follows the Poisson process with the parameter k(−). The impact
intensity follows the exponential distribution with the parameter λ(−). Similarly, the l(+)th

positive emotion is denoted by δ
(+)

l(+) (t), and the counting process {N(+)(t), t ≥ 0} follows

the Poisson process with the parameter k(+). The impact intensity follows the exponential
distribution with the parameter λ(+). During a given time period [ti−1, ti), the cumula-
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tive negative emotion is δ(−)(ti) = ∑
N(−)(ti)

l=N(−)(ti−1)
δ
(−)
l (t), the cumulative positive emotion

is δ(+)(ti) = ∑
N(+)(ti)

l=N(+)(ti−1)
δ
(+)
l (t), and the emotional impact over time period [ti−1, ti) is

δ(ti) = [δ(−)(ti) δ(+)(ti)]
T . The counting process is formulated by

f∆N(·)(ti)
(ni|k(·)) = k(·)∆ti exp{−nik(·)∆ti}, (1)

where ∆N(·)(ti) = N(·)(ti) − N(·)(ti−1), and ∆ti = ti − ti−1. The impact intensity is
formulated by

fδ(·)(δ|λ
(·)) = λ(·) exp{−λ(·)δ}. (2)

The emotional state at time t is represented by a continuous variable M(t), which
can change for better or worse over time. In order to be consistent with the direction of
physiological degradation, we define that an increase in the emotional state exacerbates
the process of physiological degradation, and a decrease in the emotional state moderates
the process of physiological degradation. The Wiener process is a commonly used non-
monotonic stochastic process, which is suitable to describe the transition of emotional state.
This paper proposes an emotional state transition process based on the Wiener process.
From time ti−1 to time ti, the change in emotional state is formulated as follows:

M(ti) = M(ti−1) + µM(ti, ti−1) + σB(∆ti), (3)

where B(∆ti) is a standard Brown motion, and µM(ti, ti−1) is the drift term defined as:

µM(ti, ti−1) = cµ tanh (ωT
δ δ(ti) + ωT

z z(ti−1) + ωdD(ti−1) + ω0)∆ti (4)

where µM(·) is a function of the physiological degradation stage D(ti−1) at the last ob-
servation time, the emotional impact δ(ti), and the covariate vector z(ti−1). Here, z(ti−1)
contains covariates that affect the emotional state transition process, which characterizes
individual differences between subjects; ωδ, ωz, ωd and ω0 are regression coefficients;
and tanh(·) is one of the commonly used activation functions, belonging to the S-like
functions that suppress the input values to a bounded range. Then, cµ tanh(·) is the drift
coefficient capturing the rate of transition, bounded between −cµ and cµ. Thus, given that
δ(ti), z(ti−1) and D(ti−1), the probability density function of ∆M(ti) = M(ti)−M(ti−1) is
formulated as follows:

f∆M(ti)
(∆mi|δ(ti), z(ti−1), D(ti−1))

=
1√

2π∆tiσ
exp

{
−
(∆mi − cµ tanh (ωT

δ δ(ti) + ωT
z z(ti−1) + ωdD(ti−1) + ω0)∆ti)

2

2σ2∆ti

}
.

(5)

3.2. Physiological Degradation Process

The changes in some underlying biomarkers associated with AD are monotonic. Two
of them are the progressive accumulation of beta-amyloid plaques outside neurons and
of tau tangles inside neurons. In addition, brain atrophy (i.e., decreased brain volume)
occurs due to cell loss in AD patients, resulting in the loss of cognitive function [26]. In
this paper, we generally refer to these changes as the physiological degradation process
{D(t), t ≥ 0}, which is considered to be monotonic, i.e., ∆D(ti) = D(ti)− D(ti−1) ≥ 0.
The gamma process is a commonly used monotonic stochastic process with independent
gamma-distributed increments. The physiological degradation process is proposed based
on the gamma process and is related to emotional states, which is formulated as follows:

D(ti) = D(ti−1) + Ga(αD(ti, ti−1), β), (6)
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where the shape parameter αD(ti, ti−1) is strictly greater than zero, defined as follows:

αD(ti, ti−1) = cga fs(M(ti−1))∆ti, (7)

where fs(·) is a sigmoid function (or a logistic function), and cga is the coefficient. Similar
to the tanh(·) function, the sigmoid function is a bounded S-like function, but it has a value
range from 0 to 1. During the time period [ti−1, ti), given the emotional state at the last
time M(ti−1), the probability density function of ∆D(ti) is formulated as follows:

f∆D(ti)
(∆di|M(ti−1)) =

βcga fs(M(ti−1))∆ti

Γ(cga fs(M(ti−1))∆ti)
∆di

cga fs(M(ti−1))∆ti−1 exp{−β∆di}, (8)

where Γ(·) is the gamma function, defined as Γ(z) =
∫ ∞

0 xz−1e−xdx.

3.3. Observation Model Based on Physiological Degradation and Emotional State

In clinical practice, the data we can directly obtain from the subjects are called ob-
servations, while physiological degradation and emotional states are latent variables and
cannot be directly accessed. Cognitive scales are commonly used to assess the severity of
AD, which are considered to be accessible observations. As one of the commonly used
cognitive scales, MMSE is selected in this paper due to its high sensitivity regarding AD [27].
A decrease in this scale’s results indicates more severe AD. In this subsection, an obser-
vation process related to physiological degradation and emotional state is proposed. The
observation process is defined based on the linear regression model as follows:

Y(ti) = h0 + hdD(ti) + hm M(ti) + ε, (9)

where the residual ε follows normal distribution N (0, σε), and h0, hd, and hm are regres-
sion coefficients. The physiological degradation process in this paper is characterized by
a monotonically increasing process, with larger values indicating a more severe condition.
The emotional state is represented by a positive or negative continuous value. When it is
greater than zero, and the value is larger, it means that the emotional state will accelerate
the physiological degradation process, and, when the opposite occurs, it will slow down
the degradation process. The observations available in clinical practice may increase or de-
crease (i.e., in the opposite direction of physiological degradation) as the disease progresses.
The sign of the regression coefficients satisfies the mapping in these two cases. Given D(t)
and M(t), the probability density function of Y(t) is formulated as:

fY(t)(yt|D(t), M(t)) =
1√

2πσε

exp
{
− (yt − (h0 + hdD(t) + hm M(t)))2

2σε
2

}
. (10)

As described in Sections 3.1–3.3, so far we have obtained a complete coupling model
of physiological degradation and emotional state for the prediction of AD. From time t0
to tn, the probability of the entire observation process is obtained by iterating the three
formulas, summarized as follows:

M(ti) = M(ti−1) + µM(ti, D(ti−1)) + σB(∆ti)
D(ti) = D(ti−1) + Ga(αD(ti, ti−1), β)
Y(ti) = h0 + hdD(ti) + hm M(ti) + ε

(11)

Due to the nonlinear and non-Gaussian nature of this model, the marginal distribu-
tion of the observation process cannot be expressed explicitly. Therefore, Markov chain
Monte Carlo (MCMC) methods are utilized to estimate posterior distributions of the
model parameters.
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4. Experiments
4.1. Experiment on Synthetic Data

We first conducted an experiment on synthetic data to perform a preliminary validation
of the proposed P-E model. This subsection focuses on the effects of emotional impacts
and the parameters of the model on the disease progression, thus providing guidance for
applying the P-E model to real datasets. We validated the performance of the P-E model in
predicting observation sequences and compared the performance with some state-of-the-art
prediction models.

4.1.1. Synthetic Data Generation

In the P-E model, only the trajectory of the observed variables can be directly assessed,
while the processes of physiological degradation and emotional state transition are not
observable. In the synthetic data experiment, in order to correspond to the cognitive
test results in the real dataset, we design the value range of the observed variable to be
from 0 to 30. A score of 30 indicates no cognitive impairment, and a lower score means
more severe cognitive impairment. A total of five groups of observation sequences with
different parameters were generated, and each group contained 20 sequence samples from
21 observations. The parameter settings for each group are shown in Table 1. In this
experiment, our focus is not to consider the influence of the covariates z(t) on the model, so
we set the regression coefficient ωz to zero. The parameter cga in Setting 1 and Setting 2 is set
differently, in order to illustrate the effect of emotional state on physiological degradation.
In Settings 3, 4, and 5, the settings of the parameters k(+) and k(−) are different, and we
keep the parameters λ(+) and λ(−) the same. The coefficients ωδ = [ω

(+)
δ ω

(−)
δ ] of the

emotional impacts on the emotional state transition are the same, which are 0.1 and −0.1,
respectively. Settings 3, 4, and 5 correspond to positive-dominant emotional impacts (i.e.,
there are more positive emotions than negative emotions), negative-dominant emotional
impacts, and fluctuating emotional impacts, respectively.

Table 1. Parameter settings for synthetic data.

k(+)/k(−) λ(+)/λ(−) ωδ ωd ω0 cµ σ cga β h0 hd hm σε

1 5/4 3/3 0.1/−0.1 0.05 0 3 0.5 10 10 30 −1 −0.5 1
2 5/4 3/3 0.1/−0.1 0.05 0 3 0.5 5 10 30 −1 −0.5 1
3 5/3 3/3 0.1/−0.1 0.05 0 3 0.5 5 10 30 −1 −0.5 1
4 3/5 3/3 0.1/−0.1 0.05 0 3 0.5 5 10 30 −1 −0.5 1
5 3&5 3/3 0.1/−0.1 0.05 0 3 0.5 5 10 30 −1 −0.5 1

4.1.2. Synthetic Data Analysis

In this paper, MCMC methods were used for estimating the posterior distributions
of the parameters. For each setting, we selected 10 samples for parameter estimation, and
the remaining samples were used for prediction tasks. We set the number of warm-up
iterations to 6000 and obtained Bayesian results from 4000 iterations after the warm-up
iterations. The number of chains is set to three, so as to check the convergence. Taking
Setting 1 as an example, as shown in Figure 3, the three chains corresponding to each
parameter converged around the same value after the warm-up iterations. The posterior
probability distributions are shown in Figure 4. The posterior distributions estimated by the
three chains are coincident, which also shows the convergence of the parameter estimation.

With the estimated posterior distributions of the parameters, we made predictions on
the observation sequences in the testing dataset. In each setting, we used 10 samples for the
prediction task. Each sample contains 21 observations, corresponding to observation times
{t0, . . . , t20}. The prediction task studied in this paper is to predict the observation at the
time ti+1 given the observations before time ti, that is, to obtain P{Y(ti+1)|Y(t0), . . . , Y(ti)}.
Each time a new observation is obtained, the parameters of the model are updated, and
then the observation Y(ti+1) is predicted. In a medical setting, the time intervals are usually
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not uniform. Our P-E model is a continuous-time model and has natural adaptability to
non-regular time series. Therefore, without a loss of generality, we generated time series
with uniform intervals in synthetic data experiments.
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Figure 3. Convergence diagnostics.
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Figure 4. Bayesian parameter estimation.

Figure 5 shows the prediction results of Settings 1 and 2. The black curves represent
the true values of the observations, and the red curves represent the predictive values.
The red point at time ti+1 is predicted from the black points before time ti. The red band
represents the 5% to 95% prediction interval. It can be seen that the red prediction interval
almost covers the black curve, thus the predicted value matches the true value. The blue
curves represent the physiological degradation processes D(t), and the parameters cga
of Settings 1 and 2 are 10 and 5, respectively. The value of cga in Setting 1 is larger, so it
results in a faster monotonically increasing D(t) and, thus, a more significant decrease in
the observations.
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Figure 5. The prediction results of under different cga. (A) Setting 1. (B) Setting 2.

Figure 6 shows the prediction results of Settings 3, 4, and 5. In these three settings, the
effect of emotional impacts is explored. In Setting 3, as shown in Figure 6A, the pink area
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represents positive emotions, and the blue area represents negative emotions. The pink area
is larger than the blue area, which indicates that the positive emotions dominate, resulting
in a positive shift in the emotional state (yellow curve). Given the parameter cga, the greater
the positive emotional state, the faster the physiological degradation process, resulting in a
more significant drop in the observations. In Setting 4, as shown in Figure 6B, the negative
emotions dominate, and the yellow curve develops negatively, thereby slowing down the
physiological degradation process, and the decline in observations is not significant. In
Setting 5, as shown in Figure 6C, the negative emotions dominate between times t0 and
t10, and the positive emotions dominate between t11 and t20. Therefore, the emotional
state initially shifts to the negative and then to the positive. The physiological degradation
process shows a gentle upward trend at the beginning, and then it increases rapidly. In the
observations, it shows a slight decrease at the beginning and then a significant decrease.
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Figure 6. The prediction results under different emotional impacts. (A) Setting 3. (B) Setting 4.
(C) Setting 5.

4.2. Prediction of Alzheimer’s Disease Progression
4.2.1. Data Preparation

The real data used in the experiments were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu, accessed on 11 November
2020). The ADNI was launched in 2003 as a public–private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessments can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). We treated subjects diagnosed as CN at all follow-ups as normal aging, which was
distinguished from neurodegenerative dementia. In the real data analysis, we considered
the subject’s APOE4 gene as a covariate in the model and did not consider the effect of
emotional impacts on the model, so we set the parameter ωδ to zero. After excluding
subjects with normal aging and missing APOE4 gene information, we obtained MMSE
scores from 134 subjects with more than 10 follow-ups. We divided the 134 subjects into
a training set (106 subjects) and a testing set (28 subjects). The training set was used to
estimate the model parameters, and the testing set was used to evaluate the predictive
performance of the model.

4.2.2. Alzheimer’s Disease Progression Analysis

In Section 4.1.1, we generated synthetic data based on characteristics of cognitive data
in AD. In the AD experiment, we heuristically selected prior distributions of parameters
based on the parameters in the synthetic data experiment. We used the MCMC method

adni.loni.usc.edu
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to estimate the posterior distributions of parameters of the model. The selected prior
distributions and estimated posterior distributions of parameters are shown in Table 2. The
R-hat convergence diagnostic compares the between- and within-chain estimates for model
parameters [28]. If the R-hat is less than 1.05, then the chains have mixed well. In the results
of the posterior distribution estimation, the R-hats of all of the parameters were less than
1.05, so we considered the estimation results to be convergent.

Table 2. The selected prior distributions and estimated posterior distributions of parameters.

Prior Distributions Posterior Distributions

Parameters Mean Standard
Deviation Parameters Mean Standard

Deviation R-Hat

ωd 0.10 0.05 ωd 0.03 0.01 1.00
ω1 0.30 0.05 ω1 0.16 0.03 1.00
ω0 −0.10 0.05 ω0 −0.16 0.04 1.00
cµ 1.30 0.05 cµ 1.29 0.05 1.00
σ 1.00 0.05 σ 1.11 0.04 1.00

cga 5.00 0.10 cga 4.98 0.10 1.00
β 6.00 0.10 β 6.02 0.10 1.00
h0 29.50 0.05 h0 29.49 0.05 1.00
hd −0.50 0.05 hd −0.41 0.05 1.04
hm −1.00 0.05 hm −0.86 0.04 1.01
σε 0.80 0.05 σε 1.05 0.03 1.00

With the posterior probability distributions of the parameters, we evaluate the predic-
tion performance on the testing set. As there are regular and random missing data in the
follow-ups of each subject, the interval time between two observations of the same subject
is not constant. When we evaluated the prediction performance of the model, we used
the posterior distributions of the parameters obtained from the training set as the prior
distributions of those of the testing set. As new observations of the testing subject were
obtained, the posterior distributions of the parameters were updated, and the MMSE score
at the next observation time was predicted.

Recurrent neural networks (RNNs) are commonly used in time series with uniform
intervals. However, in medical settings, such as the prediction task studied in this pa-
per, they are an awkward fit for irregularly sampled time series data. Therefore, we
selected four variants of the RNN to compare with the proposed P-E model, includ-
ing the continuous-time RNN (CT-RNN) [29], the ordinary differential equation RNN
(ODE-RNN) [30], the continuous-time LSTM (CT-LSTM) [31], and gated recurrent units
with ODE (GRU-ODE) [32]. We used the mean squared error (MSE) as an evaluation metric
for the prediction performance.

We performed five runs of each predictive model on the testing set with different initial
settings. The mean and standard deviation were calculated for the MSE of the five runs,
and the results are shown in Table 3. Our P-E model achieved an MSE of 7.137± 0.035,
which is the best among all of the compared methods. In Figure 7, the prediction results
of three of the testing subjects are shown as examples. It can be seen that our P-E model
can achieve a good prediction performance for subjects with slow or rapid development of
AD progression.

Table 3. Prediction of MMSE scores. (mean ± standard deviation, N = 5).

Model MSE

P-E Model (ours) 7.137 ± 0.035
CT-RNN 14.752 ± 1.474
ODE-RNN 13.498 ± 0.278
CT-LSTM 22.369 ± 0.590
GRU-ODE 14.315 ± 1.706
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Figure 7. The prediction results of AD.

5. Discussion

The proposed P-E model is a general model that can be applied to all stages of AD.
With the development of a subject’s AD progression, new observations are continuously
obtained, and we continuously update the parameters of the model to reflect the differences
at different stages. Based on the results of the synthetic data experiment and the AD
experiment, it can be seen that our P-E model has the ability to make good predictions on
the MMSE scores of AD patients. Since we introduce a non-monotonic emotional transition
process into the model, the model can also achieve good predictions for observation
sequences that are not monotonically decreasing. At the same time, due to consideration
of the covariates z(t), the model can also be adapted to prediction tasks with individual
differences. Deep learning-based methods, which often require a large amount of data,
do not work with a transparent mechanism, so it is difficult to take into account the
physiological process in AD, resulting in a predictive performance that is not as good as in
the classical application domains.

At present, our P-E model has been validated to characterize the development of AD
and make predictions. However, there is still some work to be done in the future. The effect
of emotional impacts on AD development has only been validated in synthetic data. When
the model is applied to AD, further work is needed to explore how to quantify patients’ expe-
riences in daily life as emotional impacts. In addition, the physiological degradation process
is considered to be a hidden process in the current model, which is a general representation of
the monotonic physiological indicators of AD patients. In future works, we intend to replace
this current form of hidden process with observable physiological degradation processes.
In this way, this process in the model can adopt supervised learning, allowing for a clearer
physiological interpretation and helping reveal the pathogenesis of AD.

6. Conclusions

This paper proposes a novel coupling model of the physiological degradation and
emotional state (P-E model) for AD prediction. Through the synthetic data experiment,
the basic performance of the model was validated, and the effects of the parameters of the
model on the observations were discussed. In the real data experiment, the model was
validated to be effective in AD and achieved the best prediction performance compared
with other state-of-the-art methods. In addition, the P-E model provides an explanation for
the non-monotonicity in AD progression. Thus the high interpretability of this model can
help researchers to further understand AD pathogenesis.
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